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J .  Phys. A: Math. Gen. 21 (1988) 2375-2389. Printed in the U K  

Boundary conditions for integrable quantum systems 

E K Sklyanin 
Leningrad Branch of Steklov Mathematical Institute, Fontanka 27, Leningrad 19101 1, USSR 

Received 14 September 1987 

Abstract. A new class of boundary conditions is described for quantum systems integrable 
by means of the quantum inverse scattering (R-matrix) method. The method proposed 
allows us to treat open quantum chains with appropriate boundary terms in the Hamiltonian. 
The general considerations are applied to the X X Z  and X Y Z  models, the non-linear 
Schrodinger equation and Toda chain. 

1. Introduction 

At present, a number of one-dimensional quantum integrable models are known which 
are soluble by means of the Bethe ansatz (Gaudin 1983) or the quantum inverse 
scattering method (QISM) (see Faddeev 1984, Kulish and Sklyanin 1982). The best 
studied cases are those of the infinite interval and of the finite one with periodic 
boundary conditions. As regards the systems on the finite interval with independent 
boundary conditions on each end, only a few cases solved either by the coordinate 
Bethe ansatz or directly are described in the literature. These are the Bose (Gaudin 
1971, 1983) and Fermi gases (Woynarovich 1985), the X X Z  magnet (Gaudin 1983, 
Alcaraz et a1 1987) and the Hubbard (Schulz 1985) and X Y  models (Bariev 1980). 

The aim of the present paper is to expose a systematic treatment of a new class of 
boundary conditions on the finite interval which are compatible with integrability and 
include a number of new cases in addition to the known ones. The approach proposed 
applies to all models subject to QISM. Our method originates from Cherednik’s (1984) 
recent treatment of factorised scattering with reflection. In fact, the theory presented 
below can be equally formulated in the language of factorised S matrices (Zamolod- 
chikov and Zamolodchikov 1979) or that of vertex statistical models (Baxter 1982), as 
well as in operator language. Here we shall use the latter, which is the operator 
algebraic language traditional for QISM. 

The paper is organised as follows. In 9 2 the main objects of QISM are listed and 
the necessary notation is introduced. General results concerning arbitrary R matrices 
are collected in 9 3. In 9 9  4 and 5 these results are applied to the X X Z  model and, 
in addition, some particular results for the model are presented, namely the quantum 
determinant in 9 4 and the algebraic Bethe ansatz in 9 5. Section 6 contains some 
information about other models: the non-linear Schrodinger equation, the X Y Z  model 
and the Toda chain. A brief discussion of the classical limit is given in 9 7. In 9 8 
some possible generalisations and unsolved problems are discussed. 

Some results of this paper were announced in Sklyanin (1986). 

0305-4470/88/102375 + 15$02.50 0 1988 IOP Publishing Ltd 2375 
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2. Basic notation 

Let us recall the fundamentals of QISM in the modern algebraic formulation (Faddeev 
1984, Kulish and Sklyanin 1982). 

Let V be a finite-dimensional linear space. Let the operator-valued function 
R : C c) End( VO V) be a solution to the quantum Yang-Baxter equation 

R12(u)R,,(u + V ) R 2 3 ( U )  = R 2 3 ( U ) R 1 3 ( U  + U ) R 1 2 ( U )  (1) 

in the space VI 0 VzO V,, V, = V. Here we use the standard notation R, E End( V, 0 V,). 
Let t be a fixed antiautomorphism in End( V) and t, be its counterpart in End( V,). In 
the following the basis is always chosen in V in which t coincides with the matrix 
transposition. Let B,, be the permutation operator in V,O V,, i.e. 

B ' ( x O y )  = y O x  x , y E  v. (2) 

We shall assume the R matrix R ( u )  to be symmetric, 

~ 1 2 R 1 2 ( u ) 9 1 z  = R,z(u)  (3) 

and 

R:;(u)  = R:;(u) .  (4) 

We shall also require from R ( u )  the properties of unitarity 

R 1 2 ( U ) R 1 2 ( - U )  = P ( U )  (5) 

and crossing unitarity 

R$ u ) R  ;;( - U  - 217) = p'( U )  

where p (  U )  and p'( U )  are some scalar functions and 17 is a constant characterising the 
R matrix. 

Let us connect with R ( u )  the associative algebra T defined by the generators T u p ( u )  
(a, p = 1, . . . , dim V), considered as the elements of the square matrix T ( u ) ,  and by 
the relations 

where 

1 2 
X= X O i d v 2  X= i d ,  0 X (8) 

for any matrix X E End( V). It is well known that if T , ( u )  and T2(u)  are some 
representations of the algebra T in spaces W ,  and W2,  respectively, then the product 
T(u) = T 1 ( u ) T 2 ( u )  is also a representation of T in WIO W2 (comultiplication 
operation) (Drinfeld 1985, 1986). There are two important automorphisms of T :  the 
antipode (Drinfeld 1985, 1986) 

T ( u ) c )  T " ( u ) = { T - ' ( u ) } '  (9) 

and the inversion 

T (  U )  c) T'(  U )  = T - y  -U). 
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In what follows we shall always assume that the representations used possess the 
crossing symmetry 

{ T"(u)}" = 6 ( u )  T(u -277) (11) 

*(U) being a scalar function depending on T ( u )  and 77 the same constant as in ( 6 ) .  
The use of the algebra T for the theory of the integrable systems is based on the 

following remarkable fact. If T+(u)  and T-(u)  are representations of T in the spaces 
W,,  respectively, then the quantities t ( u )  = tr, T + ( u )  T - ( u )  commute with each other 
for all values of u and, consequently, t(  U )  can be considered as a generating function 
of integrals of motion for a quantum system with the space of states W+O W-. For 
this reason W is often called the quantum space and V the auxiliary space. 

So each new representation of T gives rise to a new integrable system. In particular, 
one can choose T + ( u )  = K where K is a representation of T in 6) that is simply a 
matrix K E End( V) satisfying the equality [ R (  U), K O K ]  = 0. Let, in addition, T-( U )  = 
LN ( U )  . . . L,( U )  where L, ( U )  is a representation of T having some simple dependence 
on the spectral parameter u ( L  operator). Then t ( u )  = tr K L N ( u )  . . . L , ( u )  describes 
the closed integrable quantum chain of N sites with the quasiperiodic boundary 
condition determined by the matrix K. 

Here and below tr stands for the trace over the auxiliary space V and ti for the 
trace over V,. 

3. Open chain: general results 

Aiming to describe integrable systems with the boundary conditions different from the 
periodic ones, let us introduce two new algebras Y- and F+ defined by the given R 
matrix R ( u )  and the relations 

R12(-~1+ U ~ ) ~ ~ ( U ~ ) R I Z ( - U I  - ~ 2 - 2 7 7 ) % ? ( ~ 2 )  

= &?( u2)R12( -u l  - u2 - 277)h$( ul)Rl2(  - u l  + u2) (13) 

respectively, in the same manner as the algebra T is defined by (7). 

Proposition 1. The algebras 9- and Y+ are isomorphic. 

ProoJ: There are two obvious isomorphisms X,  Y: 9- c, Y+ 

X{F-(U)} = 9 y - U  - 7)) (14) 

and 

Y{ T-( U)} = { 91y u + T)}'. 

The proof consists in substituting (14) and (15) in (13) and using in the case of Y the 
unitarity of the R matrix (5). 
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Remark 1. The mapping 

Y-(u)HY^i(u)=X-lY{Y-(u)}= YI1(-u) 
is an automorphism of 3-. 

Remark 2. There is one more, less obvious, isomorphism 2 : Y-- Y+ given by 

2 
P l { ~ + ( u ) }  = ~ - 1 ( 2 u )  tr, ~ ~ ~ ~ , ~ ( 2 u ) ~ + ( u ) .  (18) 

The proof consists in a direct but rather long calculation which we omit. 

result. 
The use of the algebras Y* for the quantum integrability is clear from the following 

Theorem 1. The quantities t ( u )  

t (u )= t r  Y+(u)Y-(u) 
defined in the direct product Y+ x F- form a commutative family 

[ t (ud,  t(u2)l  = o  vu19 u2. 

Proo$ Consider the product t (  u , ) t ( u , ) .  Using the commutativity of the operators 
involved in Y+(u) and Y-(u) one finds 

1 1 2 2 

t ( u , ) t ( u * )  =tr ,  Y+(ul)Y-(uJ tr2 Y+(uz)Y-(uz) 
2 2 

= tr, +2(ul)+2(u,)  tr, ~ + ( u ~ ) ~ - . ( u ~ )  

= tr, .T: ( u , +2 ( u , Y+( u2) Y- ( u2)  

=tr I2  k ~ ( w l ) ~ + ( u 2 ) ~ ~ ( u I ) ~ - ( u 2 )  = .  . . . 

1 2 2 

2 2 

Using the crossing unitarity (6) and the symmetry (4) of the R matrix (for the sake 
of brevity we omit the arguments U ,  and u2 in Y+ and (u l  + u2) in 6-l and use the 
notation U ,  = U ,  * u 2 )  

1 2  1 2  
, . . = ; - I  trI2 Y ~ Y + R ~ 2 ( - u + - 2 7 7 ) R ~ ~ ( u + ) ~ ~ Y - = . , .  

applying then the transposition (note the order of non-commutative operator factors) 

. . .=;-I t r 1 2 { + ~ ~ 1 2 i - u + - 2 r ) & ~ } ~ 2 { k - ~ 1 2 ( u + ) ~ - } l ~  

= 6-l t r I2{+2~,*(-u+ - 2 7 7 ) ~ ? } ' 1 2 { ~ - ~ , ~ ( u + ) ~ - }  = . . . 
and, finally, using the unitarity (5) of the R matrix one obtains (the argument ( u1 - u2) 
in p-l  is omitted) 

. . . = p-lb-1 tr12{4-2~12(-u+ - 2 7 7 ) ~ ~ } ~ l ; ~ , ~ ( - u - ) ~ , ~ / u - ) { + - ~ ~ ~ ( u + ) & - }  
2 

2 
= p - ,T1 tr , 2{ R ( - u - ) h-2 R , ( - U +  - 2 7 ) &?} 'I;{ R ( u -) k- R , ( U , )  9-}. 

It remains to apply the relations (12) and (13) and to repeat the whole chain of 
transformations in the reverse order. In the end one arrives at t ( u 2 ) t ( u 1 ) ,  as required. 
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Thus one can consider t ( u )  (19) as a generating function of the integrals of motion 
for quantum systems defined by specifying some concrete representations of the 
algebras 5,. The following proposition provides a rich supply of such representations. 

Proposition 2. Let $+(U) be some representations of the algebras F, in the spaces Y?", 
and Ti( U )  of T in W,, respectively. Then F,( U )  defined by 

F-( U )  = T-( U )  $-(U) TI'( - U )  (20) 

and 

are representations of F, in @,o W, 

The proof in the case of F-(u) consists in direct verification of the commutation 
relations (12) using the relations (7) for T ( u ) ,  (12) for ?-(U) and the unitarity (5) of 
the R matrix. Applying the automorphism X (14) or Y (15 )  to the equality (20) one 
obtains the corresponding statement for F+( U). 

Note that the representations .U U )  of the form (20) possess the unitarity property, 
cf ( 5 )  and (lo), 

P ( U )  = F-(U). (22) 

T _ ( u ) = L , ( u ) L , - , ( u ) .  . . L , ( U )  

For applications it is convenient to choose T,(u), $=(U) in (20), (21), in the form 

where L, ( U )  are some representations of T having simple structure ( L  operators) and 
K , ( u )  are representations of .F* in C', i.e. c-number matrices. Some examples of the 
matrices K-( U )  were constructed by Cherednik (1984). 

Proposition 3. If T,(u) and $,(U) are given by (23) then the generating function t ( u )  
(19) is 

t (u )= t r  T+(u)Y-(u)=t r  K+(u)T(u)K_(u)T-'(-u) (24) 

where T (  U )  = T+( U )  T-( U )  = LN ( U )  . . . L,(  U )  and is thus independent of the factorisa- 
tion of T ( u )  into T+(u) and T-(u). 

Proof: Using the properties of the permutation operator 9' let us rewrite the definition 
(21) of F:(u) as 

or 
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Inserting (25) into (19) and rearranging the factors we obtain 

1 1 
t(  U )  = tr, F+( u)F- (  U )  

= tr, k+(u)++(u){trl ~ ~ , h - ( u ) } + ~ ~ ( - u )  

= tr, k+ ( u ) ++( u +- ( u T;' ( - u 

= tr K+(u)T+(u)T-(u)K-(u)T_'(-u)T;'(-u) 

2 

whence (24) follows immediately. 

The last question we consider in this section is the problem of local Hamiltonians. To 
derive the expression for the simplest two-site Hamiltonian we shall use a variant of 
Baxter's (1972) argument applied originally to the case of the periodic boundary 
conditions. 

Proposition 4. Let the following conditions be satisfied. 
( a )  The quantum space Wn of each L operator in (23) is isomorphic to the auxiliary 

space V and, furthermore, the L operator L n ( u )  coincides with the R matrix R ( u )  in 
the space W,, 0 V (it is convenient to denote V = WO) 

L H ( u ) =  Rno(u). 

The equality (7) for T (  U )  = L, ( U )  thus becomes equivalent to the Yang-Baxter equation 
in V,O V,O V,. 

( b )  The value of R ( u )  at U = 0 is the permutation operator (2) 

R m n  ( 0 )  = P m n  * 

(c )  K-(O)=l.  

It is known (Kulish and Sklyanin 1982) that in the periodic case the Hamiltonian 
density for the models satisfying conditions ( a )  and ( b )  is given by the expression 

d d 
du du H n , n + l  = 9 n,n+  1 - R n,n+ 1 1 I U =o  = - Rn, n+1( U) I U = o  8, n + I  

(the R matrix is assumed to be symmetric (3)). 

Hamiltonian 
In the case of the open chain the generating function t ( u )  (24) commutes with the 

ProoJ: Differentiating t ( u )  with respect to U at u = 0 and using the hypotheses ( a ) - ( c )  
it is easy to verify that 

t ' (0)  = 2 H  tr K+(O)+tr K!+(O). 

Referring to the commutativity of the family t ( u )  one comes to the conclusion required. 
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Remark 3. Apparently, the transition from the periodic chain to the open one consists 
in removing the term H N 1  from the Hamiltonian and adding two boundary terms 
determined by the matrices K , ( u ) .  One can put the boundary terms in (26) into a 
more symmetric form with respect to K ,  observing that 

1 d N  0 
- - z - ' {K+(  u ) } ~ , = ~  = ; - ' (O)  tr, H,,K+(o) + scalar terms. 
2 du 

The isomorphism Z (17) is thus closely related to the space inversion n H N - n + 1. 

Remark 4. One can obtain higher Hamiltonians, following Luscher (1976) and expand- 
ing log t (  U )  in powers of U at U = 0. 

4. The XXZ model 

In this section we shall apply the general theory stated above to the algebras .?7* 
generated by the R matrix of the X X Z  model and, in addition, derive some new results 
specific for the case in question. 

Let dim V = 2  and the R matrix R ( u )  becomes (Baxter 1982) 

where uo = 1, 
sinh $7 cosh(u +47). In the natural basis in C 2 0 C 2  the matrix (27) is given by 

wo( U )  = sinh( u +;?) cosh 47, w ~ , ~ (  U )  = sinh 47 cosh 57, w3( U )  = 

The R matrix (27) and (28) satisfies the conditions of unitarity ( 5 )  with p ( u ) =  
-sinh(u + 7) sinh(u - 7 )  and crossing unitarity (6) with p'( U )  = p(u + 7) .  

In order to construct the representations of the algebras .T* by the formulae (20), 
(21) and (23) it is necessary to specify the elementary representations & ( U )  of Y+ 
and L, ( U )  of T ( L  operators). Let K,( U )  be the solutions found by Cherednik (1984): 

K-( U )  = K ( U ,  t-) K + ( u )  = K ( u +  7,5+) 
(29)  rinh(gu + 5, -sinh( O u - 5) 1. K(u,  5)=u3s inh  U cosh (+cosh U sinh (= 

Note that our K,( U )  differ from those given in Cherednik (1984) by the factor u3 due 
to a mismatch in notation. 

Let the L operators L , ( u )  in (23) be 

) (30) 
sinh(u-u,)S:+cosh(u-u,)S', s, ( s: sinh( u - u,)S: - cosh(u - U , , ) $  

L , ( u )  = 

where U, are fixed parameters and Sz are operators representing the algebra with 
quadratic relations described in Sklyanin (1983) and Jimbo (1985). In particular, Sz 
can be realised in terms of the Pauli matrices 

S: = cosh 47 S', = ai sinh ;7 S: = u i  sinh $7 cosh 47 
1 . 2  U; = U, *lune 
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This choice corresponds to the ordinary X X Z  spin-; chain (Gaudin 1983) 
3 

Ln(u)  = c w,(u - un)(+:va. 
a = O  

For the uniform chain U, 
conditions of proposition 4 are valid and equations (26) produce the Hamiltonian 

-;v, &,(U)+ L,(u)/sinh 77, K - ( u ) +  K-(u)/sinh 5 the 

N-1 

H ( 5 - ,  5+) = C  ti + d d + i  +cosh ~ d d + i )  
n = l  

+sinh 7710; coth &+c& coth (+). (31) 
Before we proceed to the results specific for the R matrix (28) let us introduce 

Note, first of all, that in our case the antipode (9) can be expressed by the explicit 
some new notation. 

formula 

T"(u)=(+ ,T(u-77) (+2 /S{T(u- ;77) }  (32) 

where 

s { ~ ( u ) } = t r , ,  ~;~+(u-;77)+(u+f77)  (33) 
is the so-called quantum determinant of T ( u )  (Kulish and Sklyanin 1982). Here 
PF2=i(1 - P I 2 )  = -RI2(-77)/2 sinh 77 is the antisymmetriser. 

Note that, due to (32), T ( u )  satisfies the condition of the crossing symmetry (11) 
with 6(u) = S2{T(u - 7 ) } / S 2 { T ( u  -377/2)}. 

Using (32) one can rewrite (20) as 

%(U) = T-(u)K-(u)c+,T' ( -u  - q ) ( + * / S { T ( - u  -iv)}. 
For subsequent study it is convenient to multiply %(U) by S { T ( u - $ 7 ) }  and to 

shift the argument u -$ u -;T, redefining at the same time the constants U, + U, -477 in 
L , ( u )  (30). Briefly, we shall work with the matrix U - ( u ) ,  

U - ( U ) =  T - ( u ) K ( u  -47, ~ - ) c T ~ T L ( - u ) u ~  (34) 

satisfying the relations 

instead of (12) and, similarly, 
(35) 

(36) 

(37) 
2 1  

= U+Yt42)R12(-U1 - u2- 77)1;:I(u1)R12(-u1+ u2). 
Clearly, the isomorphism between the algebras U ,  and 9+ is induced by the shift 

of the argument u by $7. Therefore, all the results of the previous section are applicable 
to U, after proper modifications. 
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Let us now construct an analogue of the quantum determinant (33) for the algebra 
U- and describe its properties. 

Proposition 5. The quantity 

commutes with all of the matrix elements of U - ( u )  

or, in other words, is 'the Casimir operator' of the algebra U- .  

Proposition 6. For the representations U-( U )  of the form (34) the determinant A{ U-( U)} 
is expressed as 

A{ U-(U)} = S{ T-(u))S{ T-(-u)}A{K(u -iq, t-)} 
N 

= - s i n h ( 2 ~ - 2 q )  s inh(u+t-)  sinh(u-t-)  6 { L n ( u ) } 6 { L , ( - u ) } .  (39) 
n = 1  

Proposition 7. Let 

The following equality (inversion formula) is true: 

U _ ' ( U )  = 6-(~ - q ) / A {  U-(U -is)} 
where 6-( U )  (the 'algebraic adjunct' of U-( U)) is defined as 

L 2 
U - ( u )  = 2  tr, PY2U-(u)Rl2(2u) 

or 

U-( U )  = 
- 

- a ( 2 u ) 9 ( u )  - c ( ~ u ) ~ ( u ) +  b ( 2 ~ ) 9 ( ~ )  
= ( -a(2u)%(u)  b ( 2 u ) d ( u ) -  c ( ~ u ) ~ ( u )  

where a, b, c are the coefficients of the R matrix (28). 

Corollary. 

A{V-(u)}= U - ( u + i q ) k ( u - f q ) =  f i - ( u - i q ) U - ( u + i q )  

= 5( u - fq)d(  u +iq) - S (  u +)U(  u + $7). 

(43) 

(44) 

Proofs of propositions 5-7 are based on the fact that -R(-q) /2sinh q = P -  is a 
one-dimensional projector. Up to slight modifications, they reproduce the proofs of 
the corresponding statements for the quantum determinants S{  T (  U)} (33) given by 
Kulish and Sklyanin (1982). 
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Proposition 8. The generating function t (  U )  which, by virtue of proposition 3, can be 
put into the form 

t (  U )  = tr U+( U )  U-( U )  = tr K ( U +;7, (+) T (  U )  K ( U -;?, [-)az T' (  - u ) q  (45) 

is an even function: t ( - U )  = t ( u ) .  

Prooj Using the definition of U - ( U )  (34), and (32), (29) and (39) one obtains 

U - ( - U )  = A { U - ( U + ~ ~ ) } U - ~ ( U +  7)/sinh(2u -7) 

or, due to (41), 

U - ( - U )  = fi-(u)/sinh(2u - 7). 

By virtue of proposition 3 one can always put T-( U )  = T(  U )  and U+( U )  = K (  U +47, (+). 
Then, inserting (46) into t ( - U )  = t r  K ( - u + i q ,  ( + ) U - ( - U )  and using (29), (43) and 
(28) we come to the statement required. 

5. Algebraic Bethe ansatz 

The eigenvalues of the Hamiltonian (31) were found by Alcaraz et a1 (1987) by means 
of the coordinate Bethe ansatz. The particular case coth (* = 0 was considered earlier 
by Gaudin (1971, 1983). Here, we shall use an alternative approach and apply the 
theory developed above using a generalisation of the algebraic Bethe ansatz (Faddeev 
1984) to determine the spectrum of t ( u )  (44). 

Theorem 2. Let U - ( # )  (40) be a representation of the algebra U- (34) with the R 
matrix (28) possessing the highest vector W +  in the following sense: 

v U. %( U ) W +  = 0 

In addition, let W +  be an eigenvector of the operators &(U) and 9 ( u )  (40) 

&( U ) W +  = (Y ( U ) W +  9 ( u ) w + =  6 ( U ) W + .  

Then the following are true. 
(i) A relation exists between the eigenvalues .(U) and S(U), 

A + ( u + ; ~ ) A - ( u  -+7) =A(U-(u)} 

where 

A + ( u ) = ( Y ( u )  A - ( u ) = 6 ( u ) s i n h 2 u - ( ~ ( u )  sinh 7. 

(ii) For the vector I v l .  . . . v,) 

Ivl * .  . V M ) ' B ( V , ) .  . . % ( U M ) W +  

to be an eigenvector of the operator ?(U) 

t ( u ) = t r  K ( u + f r ) ,  [ + ) U - ( U )  
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it is necessary and, in cases where the v, are distinct, sufficient that the parameters 
U,,, satisfy the Bethe equations V m  

k # m  

The corresponding eigenvalue T( U )  of t (  U )  is 

sinh(2u + 7) 
sinh 2u T( U )  = sinh( U + 5+ - i q ) A + (  U )  

sinh( u - v, - 7) sinh( u + v, - q )  
x n  

m = l  sinh(u-u,) sinh(u+v,) 

1 
sinh 2u 

-- sinh( u - 5+ + i v ) A - (  U )  

sinh( u - U, + 7) sinh( U + v, + 7) 
x n  sinh(u -U,) sinh(u+ v,)  (54) 

Pro05 Since the algebraic Bethe ansatz for the algebra T (7) is described at length in 
the literature (Faddeev 1984) we shall indicate only the major points distinguishing 
the algebra U- from T. 

To prove statement (i), let us use the expression (43) for the quantum determinant 
A { U - ( U ) } .  Applying the operator (43) to the vector U +  and using (47) and (48) we 
obtain exactly (49). Note that A-(u) is nothing but the eigenvalue of 6 ( u )  on U + .  

Let us now prove statement (ii). Using (35) and the expressions (28) for the R 
matrix and (40) for U-(u)  one obtains the following commutation relations between 
&(U), 9 ( u )  and B(v) :  

sinh(u - v - q )  sinh(u + - 7) 
d ( u ) B ( v )  = B ( v ) d ( u )  sinh( U - U )  sinh( U + v )  

sinh 7 sinh( u + U - 7) 
sinh( u - v )  sinh( u + U )  ( 5 5 )  

sinh 7 + B(u)d(v)-sinh(u + v )  B ( u ) W v )  

2 sinh’ 7 cosh 77 
sinh( u - v )  sinh( u + U )  9 ( u ) B ( u )  = - B ( v ) d ( u )  

sinh(u - U +  q )  sinh(u + v +  7) 
sinh( U - v )  sinh( u + v )  + % ( v ) B ( u )  

+ 3 3 ( u ) d ( v )  

- a ( u ) a ( v ) .  

sinh( U - v + 277) sinh r ]  

sinh( u - U )  sinh( u + U )  
sinh 7 s inh (u+v+g)  
sinh( u - v )  sinh( u + v )  
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The relations (55) and (56) simplify if instead of 9 ( u )  one uses &(U)= 
9 ( u )  sinh 2u -&(U) sinh 7 (see (43)), 

sinh(u - U - 7) sinh(u+ v - 7) 
sinh( u - v )  sinh( U + v )  d ( u ) B ( v )  = B ( v W ( u )  

sinh 7 sinh(2v - 7) 
' (u)d(v))-sinh(u+u) sinh 2v sinh( u - U )  sinh 2v 

sinh(u - v + 7) sinh(u + v +  7) 
sinh( u - v )  sinh( U + v )  

sinh 7 
W u ) & ( v )  (57) + 

B ( v ) m  $ ( u ) B ( v )  = 

sinh 7 sinh(2u + 7) sinh(2v - 7) 
sinh( u + v )  sinh 2v 

sinh 7 sinh(2u + 7) 
sinh( u - U )  sinh 2v 

+ B ( U ) & ( V )  

- a( U )  5 (U). 

Note that the relations (57) and (58) differ from the corresponding relations for 
the algebra T (Faddeev 1984) not only by the coefficients but also by the presence of 
additional terms W ( u ) 6 ( v )  in (57) and B ( u ) d ( v )  in (58). Nevertheless, the routine 
algebraic Bethe ansatz technique applies in the present case as well. 

t ( u )  = sinh( u + t+ + i v ) & ( u )  -sinh(u - t+ + + 7 ) 9 ( u )  

Let us apply the operator t ( u )  (52) 

sinh(2u + 7) 1 - - sinh(u 4 & + - i r ] ) & ( u )  -~ sinh(u - t+ + i ~ ) & (  U )  
sinh 2u sinh 2u 

to the vector I v l . .  . . v M )  (51) and carry & ( U )  and 6 ( u )  through %(U,) with the aid 
of relations (57) and (58). To simplify the calculations one uses Faddeev's (1984) 
argument based on the commutativity of %'(U). The result has the customary form 

M 

t ( u ) l v l . .  . O M ) =  ~ ( u ) 1 2 ) ~ .  . . O M ) +  1 hmlu, V I . .  . C m . .  . v M )  

where T (  U )  is given by (54) and A, are some expressions whose vanishing is equivalent 
to the set of Bethe equations (53). For the corrections necessary in the case U, where 
they are not distinct see Izergin and Korepin (1982). 

Proposition 9. Let U - ( u )  be given by (34) where we shall put T - ( u ) =  T ( u ) .  Let, in 
addition, the representation 

m = l  

of T have the highest vector w+ 

C ( u ) w +  = 0 v u  

A ( u ) w +  = a + ( u ) w +  

which is also an eigenvector of the operators A( U )  and D( U )  

D ( u ) w +  = & ( U ) W + .  

Note that the eigenvalues 6,(u) are connected by the relation 

S + ( U + ~ ~ ) S - ( U  - 1 7 ) = 6 { T ( ~ ) }  

(compare with (49)). 
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Then the representation U-( U )  and the vector w+ satisfy the conditions of theorem 
2 and 

A+(u) =s inh(u+t - -~v)S+(u)G- ( -u )  

A- (u)  = -sinh(2u- 7) sinh(u-t_+fr])S+(-u)G_(u).  
(60) 

To prove the position use (29), (34), (40) and (59) and then, expressing the matrix 
elements of K ( u )  in terms of the matrix elements A, B, C, D of T ( u )  (59) and of 
K - ( u )  (29), apply them to w + .  

Remark. In order to pass from the vacuum w+ to U - :  B ( u ) w -  = 0 it is sufficient to 
replace t+ by -t* in (53), (54) and (60). 

6. Further examples 

Below three more examples are given: the non-linear Schrodinger equation, the X Y Z  
model and the Toda chain. 

The quantum non-linear Schrodinger equation (Sklyanin 1980) corresponds to the 
rational degeneration of the R matrix (Kulish and Sklyanin 1979) 

R l z (  U )  = U - iyBlz K ( u ,  5 )  = ucr,+it 

2 ( u ,  x)  = i  

n Here exp stands for the ordered exponential and : : for normal ordering with respect 
to the canonical fields W + ( x ) ,  9 ( x ) .  The Hamiltonian corresponding to the generating 
function (45) is 

H = {W:\Ux + yWt9+9W} d x +  1 1 9 ~ 9 + ( x ~ ) Y ( x ~ )  (61) 
a=* 

where 6, = t1 +$y. The boundary terms in (61) correspond to the following boundary 
problem for the wavefunction cp(xl,. . . , xN)  in the N-particle sector (Woynarovich 
1985) 

( a / ~ x j * ~ * ) ~ ( x l . .  .xN)/x,=x,=O j = 1, . . . , N. (62) 
In particular, for 6 = 0  we obtain the ordinary Neumann condition and for 6=00 

( K (  U )  = 1)  the Dirichlet condition. 
One can show that the operators B ( u )  (40) create the wavefunctions Iul . . . U,+,) 

(51 )  satisfying the boundary conditions (62) for the left end, x=x- .  The Bethe 
equations obtained from (53) and (60) by the substitutions &* +- i&,  1) -$ iy, &(U) -$ 

exp{ F$iu(x+ - x-)} and after linearisation of the trigonometric functions are thus 
equivalent to the boundary condition (62) being satisfied on the right end x = x+ too. 

All the results of 9 4 derived for the X X Z  model can also be applied to the X Y Z  
model (Baxter 1972, 1982). One needs to replace R ( u )  by Baxter’s (1972) R matrix 
and K,(  U )  by Cherednik’s (1984) solution. The corresponding Hamiltonian in the 
case of spin $ is 

N-1 3 
H =  1 1 $6aa~u~+1+.&cr~+~+cr~.  

n = l  a = l  
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The operators u3 in the boundary terms can be replaced, of course, by u1 or u2. The 
problem of finding the spectrum of H is unsolved as yet. 

The Toda chain (Toda 1981) corresponds to 

K + ( u )  = ( aN 
-U f fN  

R(u)  = u - i v 8  

Expanding the generating function ?(U) = tr K + ( u  - i fv)T(u)K-(u + i~ r ] )u2Tf ( -u )a2  
in powers ‘of U, 

?(U) = ( - 1 ) N [ d N + 2  + ( ~ H - : T ~ ) U ~ ~ + . .  .] 
one obtains the Hamiltonian 

H =  1 ipp’,+ 

which is absent in the list of integrable Toda chains (Bogoyavlensky 1976). There are 
good reasons to suppose that the problem of finding the spectrum of H can be solved 
using the technique developed in Sklyanin (1985) for periodic boundary conditions. 

N N-I 

exp(qn+,-qn)+(a1 eql+fPl  e2ql)+(aN e-q,v+i/3N e-2qN) 
n = 1  n = l  

7. Classical limit 

Almost all the quantum objects considered above have their classical counterparts. In 
the classical limit, as h = 77 + 0 one has (Faddeev 1984) 

[ , I  = -ifi{, 1 R(u)  = 1+ihr (u)+O(h2) .  

Equation (1) for the R matrix goes over into the classical Yang-Baxter equation 

[112(u), r13(u+u)l+[r12(u), r23(u)]+[r13(u+u), r23(u)1 =o. 
Note that from the unitarity condition (5) it follows that r ( - U )  = - r ( u ) .  Both algebras 
T- and T+ ((12) and (13)) turn into the same Poisson bracket algebra 

2 
{.+(Ul), +(U*)} = Er(&- U219 . + ( ~ l ) T b 4 2 ) 1  

2 + .+( u J r (  U1 + U2)+(  u2) - T( u2)r(  u1 + u 2 ) &  U,). 

The quantum determinant (38) degenerates into the ordinary determinant of the 
c-number matrix. A more detailed study of the classical case will be published 
elsewhere. 

8. Discussion 

The theory developed in the present paper is general enough and can be applied, in 
principle, to any model integrable by means of the R-matrix scheme (QISM).  The 
problem of describing the boundary conditions in question is reduced to listing the 
simplest representations K , ( u )  of the algebras T+ for a given R matrix. The latter 
problem has not been solved yet in its full extent, though a number of solutions are 
constructed in Cherednik (1984) for the R matrices of the series sl(n) parametrised 
by elliptic functions. 
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Another interesting problem is to study various integrable systems on the semi- 
infinite interval. It is also interesting to try to weaken the conditions (3)-(6) for the 
R matrix. 

In conclusion, let us note once more that, though we have used here exclusively 
the algebraic language in spirit of QISM, many of the results obtained could be proved 
graphically, using the language of factorised S matrices (Zamolodchikov and Zamolod- 
chikov 1979) or the vertex models of two-dimensional statistical physics (Baxter 1982). 
Since there is a well established correspondence between the one-dimensional quantum 
chains and the two-dimensional lattice models the new class of boundary conditions 
for the former could have its counterpart in the latter. 
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